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Abstract

International climate negotiations. However, individual countries have implemented various policies related to
emission reduction including promotion of renewable energy. This paper uses observed deployment and costs of so-
lar photovoltaics (PV) to infer policy-makers’ preferences for green energy in four regions, the EU, China, the USA,
and the Rest of the World (ROW). The historical learning rate of 22%, slowing to 11% after three doublings of output,
is used to model the effect of deployment on cost reduction. These preferences then imply that PV deployment will
be scaled up sufficiently to drive the cost of green energy down to parity with new fossil energy within three decades
(in our reference scenario with constant fossil-fuel prices and myopic behavior). It is shown that a stable (in a well-
defined sense) international agreement on deployment of solar PV is feasible and would result in significantly faster
deployment and cost reduction. In the reference scenario under cooperation, PV accounts for 25% of world electricity
output after 32 years. With a modest increase in fossil-fuel prices, this fraction can be considerably higher. A similar
conclusion follows even if an agreement is not reached as long as limited forward-looking behavior is triggered by
the negotiation process.
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International climate negotiations have made limited progress toward the large greenhouse gas emission reductions
required to stabilize the earth’s climate. However, individual countries and regions have implemented various policies
related to emission reduction including promotion of renewable energy [1]. The deployment of nascent technologies
leads to cost reduction via learning-by-doing, economies of scale [2], and R & D that increases with market size [3, 4].
In the case of electricity generated by solar photovoltaic installations, the learning rate, that is, the percentage decline
in the cost of generation for each doubling of output, has been observed to be about 22% [7].

The limited progress made by international negotiations in emissions reductions may in part be a reflection of the
political influence of fossil-fuel industries that resist any moves that would reduce their profitability over the horizon
of their managers, perhaps a decade or less. Solar PV promotion assumes importance in this context since it is still
a very small fraction of world electricity output, and likely to remain so within the planning horizon of current man-
agers. This makes it more politically feasible than the most favored policy instrument of economists: carbon pricing.
This is one reason that several countries or regions including China, Japan, India, Malaysia and California have in the
last year either introduced or expanded existing solar PV promotion policies. Due to the high learning rate in solar
PV, current policies that increase deployment can, by lowering costs, have large effects on emissions in two or three
decades.

Solar PV deployment has grown rapidly as a consequence of policy initiatives in some countries (See Table 1).
These initiatives reflect policy-makers’ preferences for green over fossil energy. Although the cost of PV has been
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falling rapidly, it is still about three times as expensive as fossil energy. Thus, promoting PV comes at a cost. The
actual deployments in various regions are a result of trading off the preference for green energy against its cost, and
thus provide a way to infer the strength of their respective policy-makers’ preference for green energy. This paper uses
the preferences thus inferred to develop scenarios for the deployment and cost of solar PV over the next three decades.
If policy-makers have a short time horizon of a single four-year period, then in our basal scenario with constant fossil
electricity costs, deployment takes place at a pace that results in cost parity with new fossil plants in 8 (four-year)
periods. If policy-makers’ horizon extends to another period, then their actions, through their effect on next-period
costs, affect each others’ net benefits. They are then engaged in a game. In this scenario, in a Nash equilibrium (when
regions do not act cooperatively), cost parity is achieved four to eight years sooner. We show that a stable treaty in
which regions engage in Pareto-optimal play exists. It improves on the Nash solution further, but the additional gain
is relatively small.

Below, we model the game among policy-makers. Our motivation is that agreement or even negotiation on re-
newable energy promotion policies can make the effect of deployment on next-period costs salient for policy-makers,
making them more likely to take the effects of their current-period actions on next-period costs into account. This, as
our model simulations below show, can have significant effects on the speed with which costs fall and deployment oc-
curs. The main contribution of this paper is to quantify this effect of the move from myopic to (limited to one-period
ahead) forward-looking behavior. We eschew modeling behavior that looks further into the future for two reasons.
First, we do not think it is realistic for actual policy-makers whose horizons are mostly quite short. Second, by con-
fining forward looking behavior to be at most one period ahead, we ensure that our conclusions about the deployment
path in the first few periods are not affected by any changes in model parameters in more distant periods. This lends a
desirable robustness to the model that is not present in models involving long-horizon dynamic optimization.

1 The Model
The policymaker of region i decides how much green energy to subsidize during her tenure. The regions modeled
are China, the EU, the US, and the rest of the world (ROW). We assume that the ROW consists of countries whose
individual actions are too small to appreciably influence the cost of solar PV. Therefore, we assume that the ROW is
always myopic. The policymaker weighs the perceived benefit of a new deployment of green energy against the cost
of the annual stream of subsidies required to support it. In the case that she is myopic, the policymaker weighs the
perceived benefit in the current period against the current period cost (during her tenure) of the stream of subsidies
required. Assume that we know the energy demand Et

i of a region i in period t. We denote the incremental demand in
each period by eti. The policymaker can meet the new demand eti by deploying a combination of new green energy gti
at a levelized cost of ctgi, new fossil energy f t

i at a cost of ctfi or by retiring old fossil plants (with operating costs of ctoi)
early and replacing them with new green energy. ctfi exceeds ctoi by the stream of capital cost payments that the new
plants have to make to pay off their capital investment. If gti > eti, some of the old fossil plants will be prematurely
retired in the current period. We also assume that gti ≤ min(MEt

i , E
t
i −Gt−1

i ), this caps the maximum green energy
deployment to MEt

i in a given period, where, 0 ≤ M ≤ 1 (we use M = 0.2, i.e. at most 20% of energy demand can
be replaced in the current period).

In the myopic case, the policymaker of region i in period t maximizes her utility:

U t
i = Bt

i − Ct
i

where, Bt
i is the additional benefit of green over fossil energy from the policymaker’s perspective and Ct

i is the amount
by which the cost of green energy exceeds that of fossil energy. We assume

Bt
i = Bt

i log (1 + gti)
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where Bt
i is the parameter that captures the strength of the policy-maker’s preference for green energy in period t and

gti is the new green energy deployed in period t.
The subsidy cost Ct

i depends on the cost of ctgi relative to ctfi and ctoi.

Ct
i =



gti(c
t
gi − ctfi) if ctoi < ctfi ≤ ctgi and gti ≤ eti

eti(c
t
gi − ctfi) +

(gti − eti)(c
t
gi − ctoi)

if ctoi < ctfi ≤ ctgi and gti > eti

(gti − eti)(c
t
gi − ctoi) if ctoi ≤ ctgi < ctfi and gti ≥ eti

0 if ctgi < ctoi < ctfi

The subsidy cost refers to the first in a stream of subsidies (in each subsequent period) that is required for a certain
deployment of new green capacity to take place. Henceforth, we’ll assume that the cost of green and fossil energy is
independent of the region and a function of time (period) only, i.e. ctgi = ctg. The subsidy cost structure reflects the
fact that the savings from not building new fossil plants are greater than the savings from ceasing to operate old fossil
plants. Thus countries with fast growing energy demand will find it cheaper to rapidly expand green energy production
than those with slow growing energy demand, as long as the cost of green energy remains above the operating cost of
fossil energy.

Learning by Doing and technological innovation can lead to a decrease in the cost of green energy with increasing
total deployment. It has been empirically observed in many technologies that the cost of the technology per unit of
production roughly changes as:

ctg = c0g

(
Gt−1

G0

)α

where 2α = 1− l

The cost of green energy in period t depends on the cumulative deployment Gt−1 in period t− 1. The learning rate l
is the fraction by which the cost decreases when cumulative deployment doubles. c0g is the initial cost of green energy
and G0 and Gt are the initial and current cumulative green energy deployment worldwide. More complicated learn-
ing functions are possible if the technology goes through a succession of learning regimes with different learning rates.

1.1 Myopic behavior
By myopic behavior, we mean that policy-makers do not consider net benefits that extend beyond the current four-year
period. They maximize their utilities U t

i and deploy new green energy according to the cost of green energy at the
beginning of the current period which, as we saw above, is a function of the total green energy deployment in the last
period. Under myopic behavior, the regions do not take into account the fact that their current period deployment can
lead to cost reduction in the next period. Consequently, the actions of policy-makers in other regions are irrelevant for
policy-maker i’s decision.

So far, it has been the case that ctf ≤ ctg and in all regions of the world, gti ≤ eti. Using this fact, and assuming that
policy-makers have so far acted myopically, we can infer that in each region the optimal gti has been given by

gti =
Bt

i

ctg − cf
− 1. (1)

Using the observed data on deployment and costs in the period 2007-2010 [5, 6], B0
i in that period can be inferred for

the four regions: China, the EU, the US and the ROW. We find that B0
i was highest for the EU at 16,290, and lowest

for China at 949.3. B0
i for the US was 1602.5, and 2761 for the ROW. Despite its low preference parameter, China is
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considered separately because additions to total energy demand are expected to be larger in China than anywhere else,
as seen in Table 3. Consequently, China will account for a large share of g once the cost of green energy reaches near
parity with new fossil energy but still remains significantly more expensive than existing fossil energy.

Preliminary data on deployments in 2011 allow us to test the accuracy of our model’s prediction of 2011 deploy-
ments made using the values of B0

i derived above under the assumption of myopic behavior (See Table 2). It is clear
that the model under-predicts deployments, especially in China. This could be due to cost reductions in 2010 and
2011 that were larger than usual, and perhaps also due to an increase in China’s preference parameter. It would not
be surprising if China’s preference parameter were to increase as it has only recently become a large supplier of solar
modules. Conversely, as the EU’s domestic suppliers’ market share shrinks, it is possible that the EU’s preference
parameter could decrease. Looking ahead, we might expect all countries’ preference parameters to increase over the
next few decades as the adverse effects of global warming loom larger and nearer. We do not, however, formally model
this.

Jumping ahead a bit (See 1.2), we could also ask if the EU was forward-looking in the period 2007-2010 even if
the other regions were myopic. The EU would then be able to predict the deployment of the other regions, and deploy
its 2007-2010 deployment for a lower preference parameter. We calculate the EU’s preference parameter, B0

i to be
12,232 instead 16,290 in this case. This low figure seems unlikely, especially given the 2011 deployments.

1.2 Forward-looking behavior: Nash equilibria
In scenarios with two-period strategies, the policymaker maximizes the two period utility

Vt
i = U t

i + δU t+1
i , (2)

where δ is the discount factor for a single period.

With this forward-looking behavior, policy-makers are playing a game. In this game, the choice of deployment
gti in the current period would lower the cost of green energy for all policy-makers in the next period due to learning.
Thus, compared to the myopic problem, in a Nash equilibrium of this game, policy-makers would choose higher levels
of gti in order to reap the benefits of cheaper green energy next period.

1.3 International Agreements
Since deployment this period is a public good that lowers costs for all players next period, policy-makers could further
increase their payoffs by entering an agreement specifying current-period deployments by each player that would raise
total deployment above the Nash equilibrium level. We will assume, in keeping with the literature [8, 9], that once
players enter into such an agreement, it will be adhered to. We will consider only agreements between the EU, China,
and the USA, and will assume throughout that the rest of the world (ROW) plays myopically, that is, according to Eq.
(1). This assumption is made for tractability. Any subset of these three players will be referred to as a coalition. If
singleton coalitions form, that is, if there is no agreement, then it is assumed that the EU, China and the USA will play
a Nash equilibrium while the ROW plays myopically.

Stability: We use the notion of stable agreements given by [10]. This is more demanding than that commonly used
in the literature because it requires not only that an agreement between a coalition of players be immune to defection
by a single member of the coalition but also that it be immune to defection by all stable sub-coalitions. Stability is thus
defined recursively. A singleton coalition will always be deemed to be stable. A two-player coalition will be called
stable if an agreement between its members specifying their current-period deployments can guarantee each of its
members a utility (given by Eq. (2)) that is at least as high as it would get if it were to instead play a Nash equilibrium.
In this case, it is assumed that the third player plays a best response to the coalition (the ROW is always assumed
to play myopically). If a two-player coalition is stable, it is further assumed that its members would not enter into
an agreement that they could both improve upon, so that only Pareto-optimal agreements are considered. Finally, the
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grand coalition of China, the EU, and the USA will be called stable if no stable sub-coalition of its members exists that
improves the utilities of all members of the sub-coalition (over and above what they get in a Pareto-optimal agreement
among the members of the grand coalition). Finally, in our simulations, we pick the deployment on the Pareto-frontier
of all stable grand coalitions that leads to the maximum decrease in the cost of green energy.

2 Simulations
In our simulations, we consider a set of scenarios using electricity demand projections from the IEA [6] for China, the
EU, the US, and the rest of the world (ROW) (See Table 3.). 2010 Solar PV deployments in the four regions are given
in Table 4. We assume that the learning rate of solar PV will stay at 22% for the next three doublings of global capacity
and be 11% thereafter (We follow the assumptions used by the Energy Information Administration but with a higher
learning rate, see [7, 11]). This is because most of the initial cost reduction comes from learning in the photovoltaic
cell part of the plant. The learning and cost reduction has been slower in the ‘balance of the system’ part that will come
to constitute a larger and larger share of the cost as the cost of the photovoltaic cell falls. Each period is four years long,
the typical tenure of a policymaker. We assume that all new deployments are in green energy when the cost of green
energy falls below the cost of new fossil energy. We also assume that when the cost of green energy approaches and
falls below that of old fossil energy, new green energy is deployed and old fossil energy is retired prematurely, subject
to the cap in new green deployments stated above. This cap is set to 20% of the total energy demand in that period. By
allowing green energy to grow at this rate, we are implicitly assuming that complementary institutional infrastructure
(such as time-of-day pricing) to shift demand to the daytime when solar energy is available, and physical infrastructure
such as long-distance lines for transmitting solar energy from sunlit to night-time areas will be put in place by the time
solar energy accounts for a significant fraction of electricity generation. The simulation runs for 8 periods from 2011
to 2042. We use the same cost parameters in all regions but we will consider different cost trajectories in different
simulations. We also consider simulations where a region’s preference for green energy changes over time. In each
simulation we consider the following deployment strategies (or scenarios): 1. all are myopic [MYOPIC], 2. China, the
EU, and the US always play the Nash equilibrium [NASH], and 3. China, the EU and the US form the best possible
stable grand coalition, or play Nash if the grand coalition is an empty set [COALITION]. We again note that the ROW
is always myopic.

2.1 The Reference Simulation
The Reference (R) simulation (Table 5) uses c0gi = $300/MWh, ctfi = $100/MWh and ctoi = $65/MWh. The fossil

energy costs are assumed constant throughout. We also assume that the preference for green energy, determined
from the 2007-2010 deployment, is constant throughout. Most of the initial investment in reducing the cost of green
energy comes from the region with the highest preference for it: the EU. These investments require support in the
form of subsidies. The ‘baton’ is passed to fast growing regions like China and the ROW as the cost of green energy
approaches, and subsequently, falls below the cost of new fossil energy. Compare the green energy deployment in
Table 5 in periods 6 and higher between COALITION, NASH and MYOPIC. Looking ahead leads to 5-10% reduction
in the cost of green energy with coalitions providing marginal improvements over Nash. In scenarios where regions
look ahead one period, there is more subsidy provided in all regions though the subsidy per unit of green energy is
reduced. Finally, we note that in the COALITION scenario the deployment in period 7 is according to Nash equilibrium
play. There is no stable coalition that Pareto-dominates the Nash equilibrium when the cost of green energy has fallen
below that of new fossil energy. The reason is that China and the USA have low preference parameters and in a Nash
equilibrium are already deploying only green energy. They will not start retiring old fossil plants at a high cost in order
to deploy more green energy even if the EU were to increase its deployment further.

2.2 Sensitivity Analysis
We also construct scenarios where we change one or more assumptions of the Reference simulation. The cost of fossil
energy can rise as a result of scarcity due to resource exhaustion, and/or carbon taxes. Indeed, this is more likely than
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a constant cost of fossil energy because costs are expected to rise with cumulative extraction [12]. We assume a CO2

intensity of 0.5 tCO2/MWh, about halfway between coal and gas. As noted above, the preference for green energy can
also change in the near future, especially in China and the EU. We consider the following simulations:

• Rising fossil costs (F): Table 6 has the numbers for a simulation with rising fossil fuel costs , assumed to be
constant across regions.

• Green China (C): In this simulation, we assume that China’s preference for green energy is 4 times the reference
(R) scenario, and the EU’s preference in halved (See Table 7).

• Simulation FC: In this simulation, we combine the assumptions of rising fossil costs (F) with the change in
preferences of China and the EU (C).

The costs of new fossil energy and old fossil energy are two significant thresholds of the model. A region with a
low preference for green energy will deploy significant amounts of green energy only when the cost of green energy
approaches or goes below the cost of new fossil energy. At the second threshold, new green deployment not only
meets incremental energy demand but also replaces old fossil capacity which is prematurely retired. A region with a
high preference for green energy is less affected by these thresholds directly. For example, in the Reference case the
EU, with its high preference for green energy, retires fossil capacity before the cost of green energy falls below the
cost of new fossil energy.

We find that for all scenarios (R, F, C and FC) the total annual subsidy costs are higher in COALITION: about
25%-30% more than in MYOPIC, and 10% higher than NASH. The extra subsidy is effective as it leads to a higher
deployment of green energy and the average annual current period subsidy cost per unit of green energy (henceforth,
Sg) is lower in most periods. Typically, Sg in MYOPIC is indistinguishable from NASH or COALITION in the first
period. Subsequently, when the cost of green energy is higher than the cost of new fossil capacity, Sg is lower in
COALITION or NASH in all simulations. Forward looking behavior gives more “bang for the buck”. See Table 8 for
more.

Finally, we would like to compare the green energy deployments of China and the EU in the simulations, Reference
(R) and Green China (C). We can see in Table 9 that an increase in the preference of China can make a big difference,
and can make up for a fall in the preference of the EU. More importantly, global subsidy costs are lower. A China with
a higher preference for green energy can spend less by deploying green energy instead of new fossil energy whereas
Europe might have to prematurely retire old fossil capacity to provide for the same level of deployment. Therefore,
“Learning by Doing” is achieved at a lower global cost.

3 Discussion
The estimated preference parameters of policy-makers lead to increasing deployment of green energy even in the
Reference scenario with myopic policy-makers. This is sufficient for cost parity with fossil energy to be reached in
a thirty-year horizon. Very recent figures on deployment provide suggestive evidence that, in fact, the preference
parameter of China may increase and deployments therefore proceed even faster than this scenario suggests. In the
scenario with rising fossil costs and an increased preference parameter for China (albeit a lower one for the EU), PV
deployments result in 60% of world electricity output being solar in the thirty-two year horizon of the model.

The model produces a large number of possible trajectories for the evolution of green energy. This is a result of
the interplay of the various parameters, model inputs and options: changing preference for green energy, no or limited
foresight and the changing cost of fossil fuels. The learning rate for green energy is another important variable though
we have preferred to keep it unchanged throughout all simulations. We have also kept the cap on maximum green
deployment in a given period constant across all simulations. Some robust conclusions that can be drawn form the
simulations are:
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• A policy making environment with some foresight can produce a faster decline in the cost of green energy. The
cost reaches parity with the cost of new fossil energy 4-8 years before a scenario with only myopic policymakers.

• Scenarios with a one period look ahead (a foresight of 4 years) lead to costs that are 5%-10% lower than the
corresponding myopic scenario, especially in the initial stages of the model when the fastest declines occur.

• As expected, full cooperation between regions (the COALITION scenario) produce the fastest decline in the
cost of green energy.

• The progress achieved by the NASH scenario is quite close to that of the COALITION scenario.

The last conclusion is particularly pertinent, since it is unlikely that all regions or countries of the world will sign
on to an agreement. We conclude that negotiation on co-ordinating policies among a few large jurisdictions can have
a significant effect on the time by which cost parity with new fossil plants is achieved, if, as seems likely, coordination
triggers forward-looking behavior. Since any one region’s actions, by itself, have a more modest effect on cost reduc-
tion, forward-looking behavior in the absence of coordination is less likely.

Methods
The preferences used in the model are obtained by applying Eq. (1) to 2007-2010 data on deployments and costs of
solar PV. Projections are based on data from [6]. The model is coded in Python, and makes extensive use of Scipy,
a library of mathematical software in Python. The MYOPIC scenario is straightforward. In the NASH scenario we
coarsely discretize the search region of green energy deployment of China, the EU, and the US, and numerically
calculate the best response surfaces of each region [S1, S2, S3]. The intersection of the three best response surfaces
(N = S1∩S2∩S3, the Nash equilibrium set) is numerically determined, a sufficiently large bounding cuboid around
the intersection is selected, and the process is repeated with finer discretizations till the desired tolerance is reached.
The definition of the model limits the intersection of the three surfaces to either a surface or a line or a point. In the
case of degenerate intersections (surfaces or lines), a point in the intersection set is picked at random. Since this is
a one period look-ahead model, the last period deployment is myopic and solved in the determination of the Nash
equilibrium in the penultimate period.

The program for the COALITION scenario is fairly close to NASH. In every period the Nash equilibrium is first
determined. A discretization of the search region is picked such that the grid size is less than 4% of the smallest
deployment. The three best response surfaces [S1, S2, S3], and set of stable sub-coalitions [SC1, SC2, SC3] on each
surface are determined. Finally, the set of points in the search volume, GC, that Pareto dominate 1. the Nash equi-
librium and, 2. the three sets of stable coalitions [SC1, SC2, SC3] are determined. We pick the point on the Pareto
frontier of GC that maximizes the reduction in the cost of green energy as the stable coalition. We pick the Nash
equilibrium, N, if the sets GC, SC1, SC2 and SC3 are empty.
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Table 1: Solar PV capacity (in GW) from BP Statistical Review of World Energy([5])

Year EU China USA Japan Others
2005 2.4 0.1 0.5 1.4 1.0
2006 3.4 0.1 0.6 1.7 1.2
2007 5.4 0.1 0.8 1.9 1.3
2008 10.7 0.1 1.2 2.1 1.8
2009 16.3 0.4 1.6 2.6 2.1
2010 29.6 0.9 2.5 3.6 3.1

Table 2: Predicted and reported 2011 deployments (in GW, assuming 15% efficiency)

Source EU China USA ROW World
Predicted(MYOPIC) 15.3 0.7 1.3 2.4 19.7
PV Magazine [13] 21 2 1.6 3.1 27.7
ELECTROIQ [14] - 1.7 2.7 - 23.8
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Table 3: Electricity demand projections (TWh) from the International Energy Agency ([6])

Period China EU US ROW World
0 4245.0 3332.0 4326 9422.3 21325.3
1 5238.9 3442.0 4499.2 10536.7 23716.7
2 6465.5 3555.5 4679.3 11782.9 26483.2
3 7605.3 3675.6 4851.1 13101.7 29233.7
4 8526.6 3802.5 5013.4 14485.6 31828.0
5 9559.6 3933.7 5181.1 16015.6 34689.9
6 10552.0 4061.1 5316.7 17686.5 37616.2
7 11647.4 4192.6 5455.9 19531.7 40827.6
8 12856.5 4328.4 5598.7 21569.4 44353.0

Table 4: Annual Green Energy (Solar PV) generation in 2010

Region Generation (TWh)
China 1.15
EU 38.98
US 3.31
ROW 8.87

Table 5: Results for the REFERENCE simulation. The cost of green energy, ctg , decreases over time with increasing
cumulative capacity. Recall that deployment of green energy in the current period is determined by the cost in the
previous period. Period 0 refers refers to the initial condition data at the start of the simulation. The costs given for
period i are the end of period costs that determine the next period’s deployment. The numbers in boldface show when
the cost of green energy is at or below the cost of new fossil energy.

MYOPIC NASH COALITION
Period Cost Gen. Share Subsidy Cost Gen. Share Subsidy Cost Gen. Share Subsidy

0 300 52.3 0 - 300 52.3 0 - 300 52.3 0 -
1 202.63 156.3 0.01 20.8 192.56 180.2 0.01 25.6 189.05 189.7 0.01 27.5
2 156.31 322.5 0.01 38.0 145.65 392.7 0.01 46.8 142.08 423.4 0.02 50.4
3 134.33 591.2 0.02 55.1 129.73 727.5 0.02 65.6 127.36 811.6 0.03 71.3
4 123.45 976.9 0.03 72.1 119.65 1176.7 0.04 83.9 117.21 1330.6 0.04 91.8
5 115.15 1478.1 0.04 89.0 111.73 1768.7 0.05 102.1 108.94 2055.2 0.06 112.7
6 108.12 2149.6 0.06 106.0 104.75 2595.7 0.07 120.2 99.99 3422.7 0.09 137.5
7 101.56 3120.2 0.08 122.5 97.66 3937.6 0.10 136.8 88.7 6981.8 0.17 149.7
8 90.77 6086.1 0.14 137.9 87.01 7825.0 0.18 148.6 82.1 11057.9 0.25 162.7

Units: Cost [$/MWh], Generation [TWh], (Annual Cumulative Global) Subsidy [$Billion (2010)]
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Table 6: Cost assumptions for the Reference (R) and Rising Fossil Costs (F).

Reference (R) Rising Fossil Costs (F)
Period New Old New Old

1 100 65 100 65
2 100 65 100 65
3 100 65 105 70
4 100 65 110 75
5 100 65 120 85

6-8 100 65 120 85
Units: Cost [$/MWh]

Table 7: Preference for green energy (Bt
i ) in the Reference (R) and the Green China (C) simulation. The US and ROW

preferences remains constant across scenarios.

Reference (R) Green China (C)
Period China EU US ROW China EU

1 949.3 16290 1602.5 2761.1 3797.2 16290
2-8 949.3 16290 1602.5 2761.1 3797.2 8145

Table 8: Comparison of Sg , the average current period subsidy cost of green energy, across scenarios and simulations
when the cost of green energy, ctg , is more than the cost of new fossil energy, ctf . For example, NASH/MYOPIC is the
ratio of Sg in NASH w.r.t Sg in MYOPIC for the same period. Each cell of the table shows the range and the typical
value in parentheses. Green energy subsidy costs in the COALITION scenario are typically 11% less than MYOPIC
and about 5% less than NASH.

Sg ratios between various scenarios
Period NASH/MYOPIC COALITION/MYOPIC COALITION/NASH

1st ∼1 ∼1 ∼1
ctg ≥ ctf 0.87-0.98 (0.94) 0.75-0.97 (0.89) 0.86-0.99 (0.95)

Table 9: Green energy deployment (in TWh) in the COALITION scenario for the Reference (R) and the Green China
(C) simulations. In this particular case, the increase in China’s preference for green energy makes up for the decline
in the EU’s preference.

Reference (COALITION) Green China (COALITION)
Period Cost China EU Cost China EU

0 300 1.2 39 300 1.2 39
1 182.33 5.2 150.3 189.05 27.9 149.2
2 141.57 15.4 322.1 142.08 83.2 262.4
3 128.13 39.8 574.1 127.36 197.2 387.3
4 117.92 78.2 880.6 117.21 377.9 539.9
5 108.62 145.9 1252.1 108.94 725.3 713.8
6 100 587.4 1738.3 99.99 1410.7 902.1
7 89.24 1682.7 2217.7 88.7 2505.9 1136.6
8 82.87 2891.9 2904.1 82.1 3715.1 1471.7

Units: Cost [$/MWh], Generation [TWh]
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